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Mo1va1on	

•  Average	CFD	FM	accuracy	was	2.4%	(2009)	
v  It	was	believed	that	poor	rotor	wake	resoluKon	was	responsible		
v  This	lead	to	research	in	off-body	(OB)	adapKve	mesh	refinement	(AMR)	

•  In	2011	(Chaderjian/Buning):	CFD	FM	predicted	with	0.2%	for	V22	TRAM	
v  Vortex	wake	resoluKon	had	no	effect	(10%,	5%,	and	2.5%	cKp)	
v  Rather,	it	was	crucial	to	

§  Adequately	resolve	the	formaKon	of	the	blade-Kp	vortex	
²  Fine	surface	mesh	near	rotor	Kp	and	high-order	spaKal	accuracy	

§  Maintain	a	physically	realisKc	turbulent	eddy	viscosity	in	the	vortex	wake	
²  	Detached	eddy	simulaKon	(DES)	turbulent	length	scale	
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Coarse	Wake-Grid	
ResoluKon	
∆S=10%cKp	

Fine	Wake-Grid	
ResoluKon	
∆S=2.5%cKp	

No	Difference	
In	the	FM	
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Mo1va1on	

•  In	2012	(Chaderjian/Ahmad):	UH-60A	rotor	in	hover	and	forward	flight	(C8534)	
v  Airloads	did	not	depend	on	rotor	wake	resoluKon	

•  Both	studies	did	not	involve	significant	blade/wake	interac1on	

Coarse	Wake-Grid	
ResoluKon	
∆S=10%cKp	

Fine	Wake-Grid	
ResoluKon	
∆S=2.5%cKp	
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Objec1ve	

•  An	important	ques1on	remains	
v  How	are	the	forward-flight	CFD	airloads	affected	by	rotor-wake	

resoluKon	when	there	is	significant	blade/wake	interacKon?	
v  PracKcal	engineering	issue:		High	resoluKon	wakes	are	too	expensive	

for	most	engineering	applicaKons	today	
•  Two	examples	for	a	UH-60A	rotor	in	forward	flight	are	examined	

v  Blade	vortex	interacKon	(BVI),	flight-test	counter	C8513	
v  Dynamic	stall	with	BVI,	flight-test	counter	C9017	

•  Also	examine	the	physics	of	2D	and	3D	dynamic	stall	
v  Discuss	similariKes	and	differences	in	2D	and	3D	dynamic	stall	
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What	is	BVI	and	Dynamic	Stall?	
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•  Blade	vortex	Interac1on	(BVI)	
v  When	a	rotor	blade	interacts	with	the	Kp	vorKces	from	the	other	rotor	blades	
v  Ogen	produces	high	and	irritaKng	sound	levels	

•  Dynamic	stall	
v  When	the	required	thrust	exceeds	what	the	rotor	can	provide	
v  Loss	of	Thrust	(stall)	and	increased	vibraKon	
v  Usually	occurs	at	high	flight	speeds	or	load	condiKons	

§  Limits	vehicle	flight	speed,	payload	capacity,	and	maneuverability	
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Outline	

•  Flight-Test	Data	
•  Numerical	Approach	
•  Numerical	Results	

v  BVI	–	UH-60A	(C8513)	
v  Dynamic	stall	

§  2D	NACA	0012	example	
§  3D	UH-60A	(C9017)	

•  Concluding	Remarks	
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Flight-Test	Data/CFD	Valida1on	

•  Joint	NASA/U.S.	Army	UH-60A	Airloads	Database	(1993/1994)	
v  Airloads	at	various	radial	locaKons	along	the	rotor	blade	

•  Bousman’s	qualitaKve	analysis	of	dynamic	stall	(AHS	Journal/Oct.	1998)	
v  He	examined	the	Kme	history	of	blade	pressures	to	judge	when	

§  Moment	stall:	FormaKon	of	dynamic	stall	vortex	at	blade	leading	edge	
§  Lig	stall:		When	dynamic	stall	vortex	passes	over	blade	trailing	edge	
§  Flow	separaKon	at	blade	trailing	edge	

Trim	Tab	
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Outline	

•  Flight-Test	Data	
•  Numerical	Approach	
•  Numerical	Results	

v  BVI	–	UH-60A	(C8513)	
v  Dynamic	stall	

§  2D	example	
§  3D	UH-60A	(C9017)	

•  Concluding	Remarks	
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Numerical	Approach	
(CFD/CSD	Loose	Coupling)	

OVERFLOW	2.2L	–	CFD	Flow	Solver	
•  Solves	the	Kme-dependent	Navier-Stokes	equaKons	

v  Structured	overset	grids	
v  2nd-order	dual	Kme	accuracy	(∆t=¼°	rotaKon,	60	subiteraKons)	

§  At	least	2.3	subiteraKon	residual	drop	for	all	grids	
v  5th-order	spaKal	accuracy	(central	differences/arKficial	dissipaKon)	
v  Hybrid	RANS/LES	turbulence	model	

§  Spalart-Allmaras	one-equaKon	turbulence	model	
§  DDES	length	scale	
§  SARC	rotaKon/curvature	correcKon	
§  Y+<1	at	body	surfaces	

CAMRAD	II	–	Helicopter	Comprehensive	Analysis	Code	
•  Provides	rotor-blade	aeroelasKc	deflecKons	
•  Provides	trim	control	angles	at	the	blade	root	

Loose	
Coupling	
Every	

¼	revoluKon	
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Numerical	Approach	
(Near-Body	and	Off-Body	Grids	)	

•  Rotor	blades/Hub	use	O-mesh	topology	
•  Off-body	grids	use	Cartesian	grids	with	adapKve	mesh	refinement	(AMR)	
•  Rotor	wake	captured	only	with	Level-1	grids	(10%,	5%,	and	2.5%cKp)	
•  No	interpolaKon	throughout	the	resolved	rotor	wake	

v  Has	same	resoluKon	and	coincident	overlapping	grid	points	
10	

Rotor-Blade	Grids	
Blade	Tip	

Trim	Tab	

Cartesian	Off-Body	Grids	

Level-1	Cartesian	Grid	 Level-1	AMR	
Cartesian	Grids	

Level	2	
Level	3	

Level	4	

Hub	

∆s=5%	C1p	
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Numerical	Approach	
(Overset	Grid	Sta1s1cs)	

11	

Grid	Type	 Number	of	Grids	 Surface	Grid	Points	 Volume	Grid	Points	

Rotor	Blade	 4	 117,763	 11.8	million	

Rotor	Hub	 3	 28,875	 2.5	million	

Total	(Near/Off-Body)	 750-14,700	 499,927	 83	million	–	1.8	billion	

Grids	split	into		
upper	&	lower	grids	for	

future	NB	AMR	applicaKons	

∆rmax=5%c1p	
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Numerical	Approach	
(Off-Body	AMR	Bounding	Boxes	–	Dynamic	Stall	)	
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Outline	

•  Flight-Test	Data	
•  Numerical	Approach	
•  Numerical	Results	

v  BVI	–	UH-60A	(C8513)	
v  Dynamic	stall	

§  2D	example	
§  3D	UH-60A	(C9017)	

•  Concluding	Remarks	
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Nomenclature	
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RVLT BVI	Flight	Counter	C8513	
NASA’S	OVERFLOW	Navier-Stokes	CFD	Code	

M∞	 M1p	 μ	 Re1p	 ashak,	deg	 b,	deg	 CT	

0.0982	 0.643	 0.153	 7.15x106	 0.75	 7.71	 0.00675	

Wake-Grid	Spacing	
∆S=2.5%cKp	
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Three	AMR	Wake-Grid	Resolu1ons	
BVI	Flight	Counter	C8513	

NASA’s	Pleiades	Supercomputer	
5,628	Broadwell	CPU	Cores	

500	Grids	
87	Million	Grid	Points	

4.6	Hr/Rev	

2,500	Grids	
297	Million	Grid	Points	

7.8	Hr/Rev	

12,000	Grids	
1.8	Billion	Grid	Points	

40	Hr/Rev	

∆S=10%	cKp	

∆S=	5%	cKp	

∆S=	2.5%	cKp	
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Loose	Coupling	Convergence	History	
BVI	Flight	Counter	C8513	
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Effect	of	Wake-Grid	Resolu1on	on	Airloads	

BVI	Flight	Counter	C8513	
•  Good	overall	agreement	with	flight-test	data	
•  OB	resoluKon	has	very	lirle	effect	on	airloads!	
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r/R=0.400	 r/R=0.675	 r/R=0.865	 r/R=0.965	
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r/R=0.400	 r/R=0.675	 r/R=0.865	 r/R=0.965	
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Outline	

•  Flight-Test	Data	
•  Numerical	Approach	
•  Numerical	Results	

v  BVI	–	UH-60A	(C8513)	
v  Dynamic	stall	

§  2D	example	
§  3D	UH-60A	(C9017)	

•  Concluding	Remarks	
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CFD	Anima1on	of	Two-Dimensional	Dynamic	Stall	

•  Vortex	forming	at	airfoil	leading	edge	–	(moment	stall)	
•  Vortex	passing	airfoil	trailing	edge	–	(lig	stall)	
•  Reversed	flow	

v  As	vortex	forms	at	leading	edge	
v  As	vortex	traverses	the	airfoil	and	passes	over	trailing	edge	

•  Three	stall	events,	each	smaller	than	the	previous	one	
	

How	Most	People	
Think	of	Dynamic	Stall	

	

 
α = 10! +10! sin(2kt − π

2 ),  k = ωc
2V∞

= 0.1
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Two-Dimensional	Dynamic	Stall	

 
α = 10! +10! sin(2kt − π

2 ),  k = ωc
2V∞

= 0.1

•  Force/moment	Kme-history	
indicates	3	stall	events	
v  2-3	typical	
v  2D	characterisKcs	idenKfied	

experimentally	(McCroskey		
et	al.,	1976)	

v  Many	feel	2D	captures	the	
essenKal	elements	(Tan	&	
Carr,	1996)	

v  It	will	be	shown	that	2D	does	
miss	some	important	3D	
dynamic	stall	characterisKcs	
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Outline	

•  Flight-Test	Data	
•  Numerical	Approach	
•  Numerical	Results	

v  BVI	–	UH-60A	(C8513)	
v  Dynamic	stall	

§  2D	example	
§  3D	UH-60A	(C9017)	

•  Concluding	Remarks	
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RVLT High-Resolu1on	Dynamic	Stall	(C9017)	
NASA’S	OVERFLOW	Navier-Stokes	CFD	Code	

M∞	 M1p	 μ	 Re1p	 ashak,	deg	 b,	deg	 CT	

0.158	 0.666	 0.237	 4.62x106	 -0.15	 -1.58	 0.0110	

Wake-Grid	Spacing	
∆S=2.5%cKp	

There	is	BVI	
It	is	affecKng	the	dynamic	stall	process	
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Three	AMR	Wake-Grid	Resolu1ons	
BVI	Flight	Counter	C9017	

3,200	Grids	
241	Million	Grid	Points	

6.2	Hr/Rev	

14,700	Grids	
1.3	Billion	Grid	Points	

28.5	Hr/Rev	

NASA’s	Pleiades	Supercomputer	
5,628	Broadwell	CPU	Cores	

760	Grids	
83	Million	Grid	Points	

4.5	Hr/Rev	

∆S=10%	cKp	

∆S=	5%	cKp	

∆S=	2.5%	cKp	
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Loose	Coupling	Convergence	History	
BVI	Flight	Counter	C9017	
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RVLT Effect	of	Wake-Grid	Resolu1on	on	Airloads	
Dynamic	Stall	Flight	Counter	C9017	

•  Good	overall	agreement	with	flight-test	data	
•  More	high-frequency	content,	but	lirle	effect	on	airloads!	
•  This	suggests	∆S=10%c1p	adequate	for	engineering	design	airloads	

r/R=0.400	 r/R=0.675	 r/R=0.865	 r/R=0.965	
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RVLT 
Closeup	View	of	3D	Dynamic	Stall	With	BVI	

•  Inboard	and	outboard	separaKon,	with	arached	flow	in	between	
•  3D	Vortex	rings	emired	due	to	Helmholtz	vortex	theorem	

v  Different	from	2D	Vortex	lig-off	
•  Vortex	path	altered	due	to	separaKon	

v  Can	effect	aeromechanics	of	following	rotor	blades	

Vortex	
Rings	

M∞	

y=225°	

∆S=2.5%cKp	
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RVLT Closeup	View	of	Dynamic	Stall	

•  Flow	separates	outboard	of	vortex,	
remains	arached	inboard	of	vortex	

•  SeparaKon	moves	with	the	vorKces	
•  Tip	vorKces	from	Blades	2	and	3	

appear	to	trigger	dynamic	stall	

Blade	1	at	y=225°	
•  Tip	vorKces	from	Blades	2	and	3	do	

not	disrupt	the	flow	on	Blade	1	

Blade	1	at	y=180°	

Nomenclature	

∆S=2.5%cKp	
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Rota1ng	Blackhawk	Rotor	Blade	
But	What	Happens	When	a	Vortex	Passes	Over	the	Blade?	

Higher	Incidence	
Lower	Incidence	
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Velocity	Vectors	Rela1ve	to	Rotor	Blade	

•  Outboard	incidence	is	greater	
than	inboard	incidence	by	at	
least	10	deg	

•  This	explains	why	stall	occurs	
outboard	of	the	vortex	and	
rearaches	inboard	of	the	
vortex	

Outboard	of	Vortex	 Inboard	of	Vortex	
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RVLT 
Closeup	View	of	a	Single	Blade	

(Same	Blade	Mo1on	and	Aeroelas1c	Deflec1ons)	
•  No	outboard	separaKon	in	the	3rd	quadrant!	

v  This	confirms	vortex-induced	dynamic	stall	
•  Inboard	separaKon	due	to	freestream	reversed	flow	
•  SeparaKon	along	enKre	blade	in	4th	quadrant,	due	to	blade	incidence	

Azimuth,	Deg	

M∞	
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BVI-Induced	Dynamic	Stall	(C9017)	

•  This	phenomenon	is	virtually	unknown	throughout	the	rotorcrak	community	
•  First	observed	in	a	2D	airfoil	experiment	

v  38th	European	Rotorcrag	Forum:	Zanow,	GilberKni	and	Mencarelli	
v  Similar	explanaKon	of	how	a	vortex	triggers	dynamic	stall	

•  Also	presented	at	the	73rd	AHS	Forum	(May	2017)	
v  Francois	Richez:	ComputaKonal	analysis	for	a	rotor	wind	tunnel	experiment	
v  Neal	Chaderjian:	First	Kme	observed	for	an	actual	helicopter	rotor	in	flight	

•  CFD	is	used	to	provide	greater	detail	and	insight	than	available	in	the	experiment	

Vortex	
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2D	Wind-Tunnel	Experiment	 3D	UH-60A	Rotor	
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Comparison	of	CFD	With	Qualita1ve	Flight-Test	Analysis	

(Dynamic	Stall,	C9017)	
•  Polar	plot	

v  Bousman’s	moment	stall,	lik	stall,	and	trailing-edge	
separa1on	

v  There	are	two	stall	events	
v  CFD	Outboard	and	inboard	vorKces		

§  Outboard	vortex	iniKally	moves	inboard	then	
outboard	

v  Tracks	stall	closely	up	to	270°,	where	it	drops	below	
the	blade	and	has	lirle	influence	

v  Inboard	vortex	only	moves	inboard	
•  Flight	test	does	not	indicate	inboard	reversed	flow	

v  It	must	be	there,	but	loads	are	light	and	pressure	
data	sparse	(Bousman)	
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1st	Stall	

2nd	Stall	

3	 2	

4	 1	

V∞	
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Blade	Reference	Frame	

Time-Dependent	Flow	Visualiza1on	of	Dynamic	Stall	
Blackhawk	Helicopter	Rotor	in	Forward	Flight	

Blade	Stalls	As	It	Retreats	
Away	From	the	Headwind	

Vor1city	Magnitude		
Rendered	by	Colored	Opacity	
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Image	Based	Flow	Visualiza1on	(IBFV)	

35	

•  Time	depended	surface	flow	using	a	IBFV	technique	
•  Colored	by	pressure	(Red->High;	Blue->Low)	
•  Dark	lines	show	flow	separaKon	and	rearachment	
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Conclusions	

•  Good	overall	comparison	between	CFD	airloads	and	flight-test	measurements	
for	BVI	and	dynamic	stall	cases	
•  wake	grid	resoluKons	were	∆S=10%,	5%,	and	2.5%	CKp	

•  Refining	rotor	wakes	beyond	engineering	resoluKon	(∆S=10%	CKp)	did	not	
significantly	affect	the	predicted	airloads,	even	with	blade/wake	interacKon	
v  This	 suggests	 that	 airloads	 engineers	 may	 use	 the	 coarser	 wake-grid	

resoluKon	(∆S=10%cKp)	for	hover	and	forward	fight	simulaKons	provided	
§  The	CFD	Kp-vortex	is	accurately	formed	using	a	combinaKon	of	fine	
surface	mesh	at	the	blade	Kp	and	high-order	spaKal	accuracy	

§  Use	of	a	hybrid	RANS/DDES	turbulence	model	
v  No	statement	is	inferred	for	acousKcs	

§  High	frequency	content	was	observed	on	the	higher-resoluKon	rotor	
wakes	
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Conclusions	
(Con1nued)	

v  Differences		between	2D	and	3D	dynamic	stall	
§  3D	vortex	rings	are	emired	rather	than	a	simple	2D	leading-edge	vortex	
§  Dynamic	stall	flow	separaKon	can	alter	the	path	of	a	BVI	vortex	
§  VorKces	passing	over	the	rotor	blade	caused	BVI	which	triggered	dynamic	stall	

²  This	phenomenon	has	been	observed	in	a	2D	wind-tunnel	experiment	and	also		3D	
rotor	simulaKons	(73rd	AHS	Forum)	

§  Mechanism	for	BVI-triggered	dynamic	stall	
²  Induced	velocity	field	by	other	blade-Kp	vorKces	changed	the	relaKve	angle	of	

arack	of	the	stalling	rotor	blade	
o  The	blade	AOA	increased	outboard	of	the	BVI	vortex,	causing	flow	separaKon	
o  The	blade	AOA	decreased	inboard	of	the	BVI	vortex,	resulKng	in	arached	flow	

v  The	successful	modeling	of	3D	dynamic	stall	with	BVI		should	include	an	accurate	
predicKon	of	blade-Kp	vortex	trajectories	
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